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Abstract 
In medical research, analyzing the time it takes for a phenomenon to occur is sometimes crucial. However, various factors can 
contribute to the length of survival or observation periods, and removing specific data can lead to bias results. In this paper, 
we discuss the Kaplan-Meier analysis and Cox proportional hazards regression model, which are the most frequently used 
methods in survival analysis. For the first step, we shall discuss the temporal concepts needed in survival analysis, such as 
cohort studies and then the basic statistical functions dealt with in survival analysis. After solidifying the concepts, methods 
of understanding and practical application of the Kaplan-Meier survival analysis is noted. After that, we will discuss the 
analysis methods for the Cox proportional hazards regression model, which includes multiple covariates. With the 
interpretation method of Cox proportional hazards regression result, we then discuss methods for checking the assumptions of 
the Cox proportional hazards regression, such as log minus log plots. Finally, we briefly explain the concept of time-
dependent regression analysis. It is our aim that through this paper, readers can obtain an understanding on survival analysis 
and learn how to perform it. 
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1. Introduction 
The most significant difference between retrospective cohort studies and randomized 

controlled trials (RCTs) compared to cross-sectional studies lies in their temporal 
characteristics.[1] In cohort studies, not only is a certain phenomenon (Y) important, but the 
analysis of the time it takes for the phenomenon to occur (time-to-event) is also crucial.[2] 
However, when analyzing the time-to-event values, it is essential to consider that not all 
observations are complete data. The term "complete" used in this study refers to securing the 
same observation period for all patients without censoring.[3] For example, there can be a 
situation where we designed a study to evaluate the effects of a specific drug on cancer patients' 
survival.[4] In this case, equally important as survival or death (Y = 0 or 1) is the survival time 
(time-to-event until death) for both group T (treatment group) and group C (control group). 
Thus, the dependent variable is a pair of outcome and survival time. 

However, when comparing the survival time values of patients in group T and group C 
using the t-test of the average survival time variable, the following issue arises[5]: "Should we 
exclude all data in cases where loss to follow-up occurred due to accidents, moving, tracking 
failure, research fund exhaustion, or death of observers?" Patients' observation periods can be 
reduced for various reasons, which is defined as censoring.[6] Since indiscriminately removing 
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censored data can lead to bias issues, statistics that include this censored data must be used. 
Moreover, as some patients may have different starting points for the study, the initial 
observation starting point and end point for each patient can be very diverse as shown in the 
figure (Fig. 1). Survival analysis is a research method that targets both survival time and 
observation results in order to solve all these problems.[7] 

2. Main: survival analysis 

2.1 Survival analysis related statistical functions 

Survival analysis tools treat an individual's survival time T as a random variable. That is, 
various survival analysis functions are defined and used for arbitrary values (survival time t) 
that the random variable T can take. These survival analysis functions include the following: 
1) Survival function. S(t) = P(T > t) is a function representing the probability of being alive at 

a specific time point t, which means the probability of event time T being greater than t if 
the sample has not died on the research start date, S(0) = 1. As t in S(t) increases, the value 
of S(t) either remains the same or decreases (monotonically decreasing characteristic). 

2) Lifetime distribution function. F(t) = 1–S(t), which is the probability that an event has 
occurred up to a specific time point t, opposite to the survival function. The lifetime 
distribution function F(t) is a type of cumulative function. The function f(t), which is the 
original form of this cumulative function, is the derivative of F(t) with respect to time, and 
is called the survival distribution density. f(t) can be interpreted as the death rate per unit 
time at the time point t. 

3) Hazard function. h(t) = f(t)/S(t). This is the conditional probability that an event will occur 
immediately after surviving up to time t. The probability of an individual survivor who has 
survived up to day t and dying on day t is obtained by dividing the number of deaths 
occurring on day t, f(t), by the number of survivors remaining alive up to day t, S(t). Also, 
there is a cumulative hazard function H(t), which is the integral function of h(t). 

 

 

Fig. 1. Variety of study participants 
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2.2 Kaplan-Meier survival analysis 

Kaplan-Meier survival analysis is a statistical technique for estimating the survival function. 
It corresponds to non-parametric statistics, which means that it does not assume parameters and 
calculates probabilities directly from the given data, regardless of the population's distribution 
shape. In other words, it does not include normal distribution assumptions, allowing more 
general use of the data. According to the Kaplan-Meier estimator method, the data is first 
arranged in order from the shortest to the longest observation period, and then the starting 
points are all aligned to 0 (Fig. 2). 

2.3 Kaplan-Meier survival analysis and result interpretation using R 

Examining the following example can help understand how to interpret the results of 
survival analysis in practice. The attached Cancer.csv file is Edmunson's ovarian cancer 
research data (Table 1) [8]. Applying Edmunson's study, we examined whether patients who 
used a newly developed anticancer drug for ovarian cancer (treatment = 2) survived longer than 
those who used the existing anticancer drug (treatment = 1) using Kaplan-Meier analysis. The 
observation time (variable name: time) is the number of days from the start of treatment to the 
occurrence of death or the end of follow-up. 

 

 

Fig. 2. Arrange the data in order, unifying the observation points 
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Table 1. Example data 

ID Treatment 
(yes or no) Month Death Age, years Residual Condition 

1 1 2 1 72.3315 2 1 
2 1 3 1 74.4932 2 1 
3 1 5 1 66.4658 2 2 
4 2 14 0 53.3644 2 1 
5 1 14 1 50.3397 2 1 
6 1 14 0 56.4301 1 2 
7 2 15 1 56.937 2 2 
8 2 15 1 59.8548 2 2 
9 1 15 0 64.1753 2 1 

10 2 18 1 55.1781 1 2 
11 1 21 1 56.7562 1 2 
12 2 24 0 50.1096 1 1 
13 2 25 0 59.6301 2 2 
14 2 25 0 57.0521 2 1 
15 1 26 0 39.2712 1 1 
16 1 28 0 43.1233 1 2 
17 1 34 0 38.8932 2 2 
18 1 36 0 44.6 1 1 
19 2 37 0 53.9068 1 1 
20 2 40 0 44.2055 2 1 
21 2 40 0 59.589 1 2 
22 1 8 1 74.5041 2 2 
23 1 11 1 43.137 2 1 
24 2 11 1 63.2192 1 2 
25 2 12 1 64.4247 2 1 
26 2 12 0 58.3096 1 1 

 

library(survival) 
Surv(time, death) 
f1 <- survfit(Surv(time, death) ~ treatment, data = cancer) 

 
First, the load of the survival library in R and change of the research outcome pair, survival 

time and survival status, into a special variable (Surv). Then, the survival results (Surv) can be 
fitted to the Kaplan-Meier method according to the treatment group. The last line is the code 
that fit this into the Survfit function, which will obtain the resulting model f1. 

In most cases, survival analysis compares the Kaplan-Meier survival curves of two groups. 
The comparison method used is the log-rank test, with the alternative hypothesis that the 
survival curves of the treatment and control groups are different. When comparing three or 
more groups, each are compared using the post-hoc test adjustment. The following is the code 
to visualize the results of survival analysis using the Survminer library in order to obtain 
confidence intervals and to obtain the P-value of the log-rank test.[9] 
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Library(survminer) 
ggsurvplot(f1, conf.int=TRUE, risk.table = TRUE, pval = TRUE) 

 
When looking at the results of the code execution in terms of simple survival, it can be 

found that the new drug treatment group appears to have survived longer. However, the graph 
shows an overlapping of 95% confidence intervaks, and furthermore, the log-rank test outputs 
P-value=0.3. In conclusion, it is determined that the new drug did not significantly increase 
survival (Fig. 3). 

The fact that the proportional hazards assumption is a prerequisite for using the log-rank 
test described above must always be taken into consideration as it is the assumption that the 
hazard ratio remains constant throughout the study period. A constant hazard ratio means that 
the mortality rate of the treatment group/control group is always constant from day 1, day 2, ..., 
until the end of the study. 

Kaplan-Meier survival analysis focuses only on the observation period and the occurrence 
of events. Therefore, other risk factors (such as gender and age) are not considered. Having no 
covariates in actual medical practice, not experimental studies, is rare. Nonetheless, in an RCT 
case, variables other than placebo and treatment drugs are randomly assigned and can be 
excluded from the model, so it is often used in such cases. However, in most studies where the 
match of other covariates cannot be assured, the Cox proportional hazards regression model, 
which will be discussed later, should be used. 

2.4 Cox proportional hazards regression model 

The basic Cox proportional hazards regression model assumes, like the Kaplan-Meier 
survival analysis, that the hazard ratio remains constant. The difference from it and the Kaplan-
Meier survival analysis is that Cox proportional hazards regression models can analyze other 
variables that affect the occurrence of events. This is often the reason why the Cox proportional 
hazards model is used in most data studies.[10-13] 

In the proportional hazards regression model, unlike the Kaplan-Meier analysis, an 
assumption about the original form of the survival function is needed. In the Cox proportional 
hazards regression model, this function is assumed to be an exponential function, such as 
s(t)=exp(–kt). Also, the hazard ratio must always be constant over time, which is called the 
proportional hazards assumption.[14] 

Under such assumptions, like in ordinary regression analysis, the hazard ratio of each 
covariate can be estimated and significant results can be obtained. In most cases, the hazard 
ratio can be interpreted in a similar way to the relative risk. The significance is evaluated based 
on whether the confidence interval includes 1 or not, and the value of the hazard ratio itself is 
given a quantitative meaning.[15] 

After analyzing the Cox proportional hazards regression model, survival functions and 
cumulative hazard functions are graphically represented as in the survival analysis. Similarly, it 
is common to display censored data, the number of survivors at each time point, etc. It is also  
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Fig. 3. Kaplan-Meier analysis of Edmunson's ovarian cancer research data 

often necessary to represent figures most commonly used for testing the proportional hazards 
assumption, such as the log minus log plot.[16] The log minus log plot is a graph that performs 
log-log transformation on the survival function and outputs it for each value of the categorical 
variable; if there is an intersection in the graph, it can be determined that the proportional 
hazards assumption has been violated.[17] 

2.5 Cox time-dependent regression model for violated proportional hazards assumption 

If an intersection is confirmed in the log minus log plot, the proportional hazards 
assumption is violated, meaning that the hazard ratio changes over time. In such cases, the 
time-dependent Cox regression can be performed to analyze changes in variables over time.[18] 
In fact, many clinical variables strictly correspond to time-dependent variables.[19] Vital sign 
values, blood test values, etc., are typical examples of time-dependent variables that change 
over time. Moreover, even if there is a constant value without time-dependency, a time-
dependency could be hidden; for example, even if the same drug dosage is set daily, its effect 
may decrease as resistance develops.[20] 

When dealing with time-dependent variables, it may be appropriate to divide them based on 
the time-dependent cycle and assign them to each observation period. For example, in a study 
that checks for deaths on a daily basis and performs blood tests every week (every 7 days), data 
can be split at 7-day intervals and the method of using the blood test value variables for that 
week is possible.[11, 21] 
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3. Conclusion 
Survival analysis has established itself as a very crucial research methodology in the 

medical field where observation time is important. Through survival analysis, such as the 
Kaplan-Meier analysis, the incidence of each group over time can be verified, and testing the 
differences between groups is possible. Furthermore, by using the Cox proportional hazards 
regression model, the hazard ratio of each group can be estimated quantitatively. As it is also 
possible when covariates are present, such methods are very useful for real world data research. 
However, testing the proportional hazards assumption, such as with the log minus log plot, is 
necessary in the progress. Finally, time-dependent Cox regression can be used for data with 
time-dependency using the time-dependent Cox regression. 

 

Capsule Summary 
This statistical standard and guideline of Life Cycle Committee summarizes the Kaplan-Meier 
analysis and Cox proportional hazards regression model, which are the most frequently used 
methods in survival analysis 
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